222 research outputs found

    Significance of MAD2 expression in mitotic checkpoint control and cellular sensitivity in nasopharyngeal carcinoma cells

    Get PDF
    published_or_final_versio

    A Comparison of Accuracy between A New Commercial ELISA Test, GenediaTM Test and Other Commercial ELISA Tests for Serological Diagnosis of Helicobacter pylori Infection in Korea

    Get PDF
    Background/Aims : A new commercial enzyme linked immunosorbent assay (ELISA) test using Korean Helicobacter pylori (H. pylori) as an antigen, GenediaTM test, was compared to other serologic tests for H. pylori infection. Methods: Among two hundred seventy three subjects, H. pylori-positive group was consisted of 132 patients (50 peptic ulcer diseases, 52 chronic gastritis, and 30 gastric cancers) and H. pylori-negative group was consisted of 141 patients (121 adults and 20 pediatric patients). Endoscopic antral biopsy specimens were obtained for microscopy and rapid urease test (CLOTM test). We also performed GenediaTM IgG, IgA ELISA, G.A.P IgG, IgA ELISA, and Cobas-core IgG EIA. H. pylori infection was defermined when H. pylori was detected histologically or the results of CLOTM tests were positive. Results : The sensitivities and specificities of the serologic tests were 96.2% and 46.1% in GenediaTM IgG, 91.7% and 52.5% in GenediaTM IgA, 81.8% and 46.8% in G.A.P IgG, 25.0% and 85.1% in G.A.P IgA, 96.9% and 38.6% in Cobas-core test, respectively. In H. pylori-negative pediatric patients, the specificity of the tests was 80% in GenediaTM IgG, 95% in GenediaTM IgA, 60% in G.A.P. IgG, 100% in G.A.P IgA, and 75% in Cobas-core test. Conclusions: In Korea, GenediaTM test was comparable or superior to general serologic tests used for diagnosing H. pylori infection. However, it is necessary to improve the specificity of the GenediaTM test. (Kor J Gastroenterol 2000;36:20 - 28)ope

    Longer fixation duration while viewing face images

    Get PDF
    The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features

    Anatomical connectivity patterns predict face selectivity in the fusiform gyrus

    Get PDF
    A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using only structural connectivity, as measured through diffusion-weighted imaging, we were able to predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard group-average benchmark. The structure–function relationship discovered from the initial participants was highly robust in predicting activation in a second group of participants, despite differences in acquisition parameters and stimuli. This approach can thus reliably estimate activation in participants who cannot perform functional imaging tasks and is an alternative to group-activation maps. Additionally, we identified cortical regions whose connectivity was highly influential in predicting face selectivity within the fusiform, suggesting a possible mechanistic architecture underlying face processing in humans.United States. Public Health Service (DA023427)National Institute of Mental Health (U.S.) (F32 MH084488)National Eye Institute (T32 EY013935)Poitras FoundationSimons FoundationEllison Medical Foundatio

    Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons

    Get PDF
    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex

    Neural Representations of Personally Familiar and Unfamiliar Faces in the Anterior Inferior Temporal Cortex of Monkeys

    Get PDF
    To investigate the neural representations of faces in primates, particularly in relation to their personal familiarity or unfamiliarity, neuronal activities were chronically recorded from the ventral portion of the anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of a facial identification task using either personally familiar or unfamiliar faces as stimuli. By calculating the correlation coefficients between neuronal responses to the faces for all possible pairs of faces given in the task and then using the coefficients as neuronal population-based similarity measures between the faces in pairs, we analyzed the similarity/dissimilarity relationship between the faces, which were potentially represented by the activities of a population of the face-responsive neurons recorded in the area AITv. The results showed that, for personally familiar faces, different identities were represented by different patterns of activities of the population of AITv neurons irrespective of the view (e.g., front, 90° left, etc.), while different views were not represented independently of their facial identities, which was consistent with our previous report. In the case of personally unfamiliar faces, the faces possessing different identities but presented in the same frontal view were represented as similar, which contrasts with the results for personally familiar faces. These results, taken together, outline the neuronal representations of personally familiar and unfamiliar faces in the AITv neuronal population

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception

    Differences in selectivity to natural images in early visual areas (V1–V3)

    Get PDF
    High-level regions of the ventral visual pathway respond more to intact objects compared to scrambled objects. The aim of this study was to determine if this selectivity for objects emerges at an earlier stage of processing. Visual areas (V1–V3) were defined for each participant using retinotopic mapping. Participants then viewed intact and scrambled images from different object categories (bottle, chair, face, house, shoe) while neural responses were measured using fMRI. Our rationale for using scrambled images is that they contain the same low-level properties as the intact objects, but lack the higher-order combinations of features that are characteristic of natural images. Neural responses were higher for scrambled than intact images in all regions. However, the difference between intact and scrambled images was smaller in V3 compared to V1 and V2. Next, we measured the spatial patterns of response to intact and scrambled images from different object categories. We found higher within-category compared to between category correlations for both intact and scrambled images demonstrating distinct patterns of response. Spatial patterns of response were more distinct for intact compared to scrambled images in V3, but not in V1 or V2. These findings demonstrate the emergence of selectivity to natural images in V3

    The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex

    Get PDF
    Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions.National Science Foundation (U.S.). Science and Technology Center (Award CCF-1231216)National Science Foundation (U.S.) (Grant NSF-0640097)National Science Foundation (U.S.) (Grant NSF-0827427)United States. Air Force Office of Scientific Research (Grant FA8650-05-C-7262)Eugene McDermott Foundatio

    Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objects in our environment are often partly occluded, yet we effortlessly perceive them as whole and complete. This phenomenon is called visual amodal completion. Psychophysical investigations suggest that the process of completion starts from a representation of the (visible) physical features of the stimulus and ends with a completed representation of the stimulus. The goal of our study was to investigate both stages of the completion process by localizing both brain regions involved in processing the physical features of the stimulus as well as brain regions representing the completed stimulus.</p> <p>Results</p> <p>Using fMRI adaptation we reveal clearly distinct regions in the visual cortex of humans involved in processing of amodal completion: early visual cortex – presumably V1 -processes the local contour information of the stimulus whereas regions in the inferior temporal cortex represent the completed shape. Furthermore, our data suggest that at the level of inferior temporal cortex information regarding the original local contour information is not preserved but replaced by the representation of the amodally completed percept.</p> <p>Conclusion</p> <p>These findings provide neuroimaging evidence for a multiple step theory of amodal completion and further insights into the neuronal correlates of visual perception.</p
    corecore